Summary
France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.
The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.
President Macron hailed the launch as a key step for low-carbon energy and energy security.
Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”
There is around a century’s with of uranium with current mines.
But right now uranium is very cheap so most of it is “wasted”. There is plenty of way of recycling used nuclear fuel or improving the productivity of uranium enrichment.
If uranium supply starts to actually be a problem there is a way to “create” more nuclear fuel: breeder reactor.
With breeder reactor France could fuel their reactor for millennia only with the depleted uranium they have in stock (when enriching uranium you end up with a tiny account of enriched uranium on one side and depleted uranium on the other, France is keeping the depleted uranium in stock specifically for this scenario)
source (french)
Yeah or put another way: All that nuclear waste we occasionally talk about burying under a mountain has something like more than 90% of its energy left.
I have always wondered how it’s stored… always imagined like 55 Gal drums in some Simpsonsesque way, but that doesn’t really make sense… but maybe it does?
Like that but way bigger. The fuel is still in solid form and stored in giant heavy dry casks that essentially armor that fuel from the outside world.
Also encased in glass, and both the cask and the glass can stop the radiations on their own iirc.
No.
They speak about it in the article I linked (in French unfortunately). The waste that we talk about burying is what’s left AFTER extracting all the components that could be reused.